1. Prove Kepler's third law

2. Find the maximum and minimum values of \(f \) subject to the given constraints:

\[
f(x, y, z) = ye^{x-z}, \quad 9x^2 + 4y^2 + 36z^2 = 36, \quad xy + yz = 1
\]

(You may use a CAS to solve the problem)

3. Evaluate:

\[
\int_{0}^{\sqrt{4-x^2}} \int_{0}^{2\sqrt{4-x^2}} x^2y^2 \, dy \, dx
\]

4. Find the volume of the solid that the cylinder \(r = a \cos \theta \) cuts out of the sphere of radius \(a \) centered at the origin.

5. Show that

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{x^2 + y^2 + z^2}} e^{-(x^2 + y^2 + z^2)} \, dx \, dy \, dz = 2\pi
\]

6. Use Maple or Mathematica to plot the vector field

\[
\mathbf{F}(x, y) = \langle y^2 - 2xy, 3xy - 6x^2 \rangle
\]

Explain the appearance by finding the set of points \((x, y)\) such that \(\mathbf{F}(x, y) = \mathbf{0} \).

7. Use Stoke's theorem to evaluate \(\iint_S \text{curl} \mathbf{F} \cdot d\mathbf{S} \) where

\[
\mathbf{F}(x, y, z) = \langle -yz, xz, 3(x^2 + y^2)z \rangle \quad \text{and} \quad S \text{ is the part of the paraboloid } z = x^2 + y^2 \text{ that lies inside the cylinder } x^2 + y^2 = 1, \text{ oriented upward.}
\]

8. Use the divergence theorem to find the outward flux of the vector field

\[
\mathbf{F}(x, y, z) = \langle x^2, y^2, 4z^2 \rangle \quad \text{across the boundary of the rectangular prism: } 0 \leq x \leq 1, \quad 0 \leq y \leq 5, \quad 0 \leq z \leq 5
\]
9. For a surface \(z = f(x, y) \), recall that a normal vector to the tangent plane at \((a, b, f(a, b))\) is \(\langle f_x(a, b), f_y(a, b), -1 \rangle \). Show that the surface area formula can be rewritten as

\[
\text{Surface area} = \iint |\mathbf{n}| \quad dA
\]

where \(\mathbf{n} \) is the unit normal vector to the surface. Use this formula to set up a double integral for the surface area of the top half of the sphere \(x^2 + y^2 + z^2 = 4 \) (Hint: Use the gradient to compute the normal vector and substitute \(z = \sqrt{4-x^2-y^2} \) to write the integral in terms of \(x \) and \(y \).) For a surface such as \(y = 4 - x^2 - z^2 \), it is convenient to think of \(y \) as the dependent variable and double integrate with respect to \(x \) and \(z \). Write out the surface area formula in terms of the normal vector for this orientation and use it to compute the surface area of the portion of \(y = 4 - x^2 - z^2 \) inside \(x^2 + z^2 = 1 \) and to the right of the \(xz \)-plane.