1. Evaluate the triple integral $\iiint_{Q} f(x, y, z) \, dV$ where $f(x, y, z) = x - y$, and Q is bounded by $z = x^2 + y^2$ and $z = 4$.

2. Compute the volume of the solid bounded by $z = x^2$, $z = x + 2$, $y + z = 5$ and $y = -1$.

3. Compute the volume of the solid bounded by $z = 5 - y^2$, $z = 6 - x$, $z = 6 + x$ and $z = 1$.
4. Find the mass and center of mass of the solid bounded by \(z = x^2 + y^2 \) and \(z = 4 \) with density \(\rho(x, y, z) = 2 + x \).

In exercises 5 and 6, sketch the solid whose volume is given and rewrite the iterated integral using a different innermost:

5. \[
\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} dz \, dy \, dx.
\]

6. \[
\int_{0}^{2} \int_{0}^{2} \int_{y^2 + z^2}^{2} dx \, dy \, dz.
\]